If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+14x-3=0
a = 14; b = 14; c = -3;
Δ = b2-4ac
Δ = 142-4·14·(-3)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{91}}{2*14}=\frac{-14-2\sqrt{91}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{91}}{2*14}=\frac{-14+2\sqrt{91}}{28} $
| 3w−2=7 | | (2/3)=(4/5)x-(1/3) | | 4x+63=50 | | (2/3)=(4/5)x-1/3 | | -12 = r3+ -9 | | 2x^2-11x=60 | | 2h−1=1 | | 21+2y=18 | | 2x+x-4x=6 | | ((w-5)/(4))+((w-2)/5))=5/4 | | 5x+-7+3x=25 | | 32•46=y | | 3-6/x=5 | | (2/3)=4/5x-1/3 | | 2(2t+5)=14 | | 116-x=90 | | 56.6=8.7x÷8 | | 116+x=90 | | -7x+37=4x-6/2 | | 116-x=180 | | 10-3x=5x-14 | | 116=180x | | 116=90x | | 24/18=n/6 | | 26-8x=12+6x | | 8x-24=3x+2 | | Y=2x+3÷2 | | 28=90x | | (-5x-4)(x+3)=0 | | 28=180x | | 90=x+28 | | 3x+3x+5=500 |